首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   423篇
  免费   13篇
  国内免费   12篇
测绘学   11篇
大气科学   41篇
地球物理   114篇
地质学   116篇
海洋学   100篇
天文学   36篇
综合类   4篇
自然地理   26篇
  2023年   2篇
  2021年   7篇
  2020年   8篇
  2019年   12篇
  2018年   9篇
  2017年   17篇
  2016年   17篇
  2015年   12篇
  2014年   17篇
  2013年   14篇
  2012年   15篇
  2011年   24篇
  2010年   24篇
  2009年   18篇
  2008年   15篇
  2007年   19篇
  2006年   16篇
  2005年   23篇
  2004年   9篇
  2003年   18篇
  2002年   9篇
  2001年   16篇
  2000年   10篇
  1999年   5篇
  1998年   11篇
  1997年   8篇
  1996年   11篇
  1995年   6篇
  1993年   6篇
  1992年   4篇
  1991年   4篇
  1990年   4篇
  1989年   3篇
  1988年   4篇
  1987年   4篇
  1985年   5篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1981年   3篇
  1980年   3篇
  1979年   6篇
  1978年   5篇
  1977年   2篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1971年   2篇
  1962年   1篇
  1955年   1篇
排序方式: 共有448条查询结果,搜索用时 15 毫秒
101.
Automation in baseflow separation procedures allowed fast and convenient baseflow and baseflow index (BF and BFI) estimation for studies including multiple watersheds and covering large spatio‐temporal scales. While most of the existing algorithms are developed and tested extensively for rainfall‐ and baseflow‐dominated systems, little attention is paid on their suitability for snowmelt‐dominated systems. Current publishing practice in regional‐scale studies is to omit BF and BFI uncertainty evaluation or sensitivity analysis. Instead, “standard” and “previously recommended” parameterizations are transferred from rainfall/BF to snowmelt‐dominated systems. We believe that this practice should be abandoned. First, we demonstrate explicitly that the three most popular heuristic automated BF separation methods—Lyne–Hollick and Eckhardt recursive digital filters, and the U.K. Institute of Hydrology smoothed minima method—produce a wide range of annual BF and BFI estimates due to parameter sensitivity during the annual snowmelt period. Then, we propose a solution for cases when BF and BFI calibration is not possible, namely excluding the snowmelt‐dominated period from the analysis. We developed an automated filtering procedure, which divides the hydrograph into pre‐snowbelt, post‐snowmelt, and snowmelt periods. The filter was tested successfully on 218 continuous water years of daily streamflow data for four snowmelt‐dominated headwater watersheds located in Wyoming (60–837 km2). The post‐snowmelt BF and BFI metric can be used for characterizing summer low‐flows for snowmelt‐dominated systems. Our results show that post‐snowmelt BF and BFI sensitivity to filter parameterization is reduced compared with the sensitivity of annual BF and BFI and is similar to the sensitivity levels for rainfall/baseflow systems.  相似文献   
102.
The Chandmani Uul deposit is located in Dornogovi province, Southeastern Mongolia. Iron oxide ores are hosted in the andesitic rocks of the Shar Zeeg Formation of Neoproterozoic to Lower‐Cambrian age. Middle‐ to Upper‐Cambrian bodies of granitic rocks have intruded into the host rocks in the western and southern regions of the deposit. The wall rocks around the iron oxide ore bodies were hydrothermally altered to form potassic, epidote, and sericite–chlorite alteration zones, and calcite and quartz veinlets are ubiquitous in the late stage. Since granitic rocks also underwent potassic alteration, the activity of the granitic rocks must have a genetic relation to the ore deposit. The ore mineral assemblage is dominated by iron oxides such as mushketovite, euhedral magnetite with concentric and/or oscillatory zoning textures, and cauliflower magnetite. Lesser amounts of chalcopyrite and pyrite accompany the iron oxides. Among all these products, mushketovite is dominant and is distributed throughout the deposit. Meanwhile, euhedral magnetite appears in limited amounts at relatively shallow levels in the deposit. By contrast, cauliflower magnetite appears locally in the deeper parts of the deposit, and is associated with green‐colored garnet and calcite. Sulfide minerals are ubiquitously associated with these iron oxides. The oxygen isotope (δ18O) values of all types of magnetite, quartz, and epidote were found to be ?5.9 to ?2.8‰, 10.5 to 14.9‰, and 3.6 to 6.6‰, respectively. The δ18O values of quartz–magnetite pairs suggest an equilibrium isotopic temperature near 300°C. The calculated values of δ18O for the water responsible for magnetite ranged from 2 to 10‰. All the data obtained in this study suggest that the iron oxide deposit at the Chandmani Uul is a typical iron oxide–copper–gold deposit, and that this deposit was formed at an intermediate depth with potassic and sericite–chlorite alteration zones under the oxidized conditions of a hematite‐stable environment. The δ18O range estimated implies that the ore‐forming fluid was supplied by a crystallizing granodioritic magma exsolving fluids at depth with a significant contribution of meteoric water.  相似文献   
103.
A continuous flow method for the determination of ammonium concentration in seawater from a nanomolar to a micromolar level is described. To prevent spurious peaks derived from salinity difference, a gas-permeable hydrophobic membrane filter was used to separate the manifold into an outgassing section and an indophenol blue reaction section. The indophenol blue reaction section was adopted for colorimetric analysis and is equipped with a 1-m path length liquid capillary cell and a fiber-optic spectrometer, which is able to record the absorbance at multiple wavelengths. The minimum detection limit at wavelength 630 nm is 5.5 ± 1.8 nM, and the calibration curves are linear to at least 2,000 nM. In addition, the minimum detection limit at wavelength 530 nm was 13 ± 5.3 nM, and linear calibration curves were observed until at least 10,000 nM. The slopes of the calibration curves were similar for standards prepared using filtered seawater and ultrapure water. The ammonium concentration of the ultrapure water was similar to those of ion-exchanged water and unfiltered low-nutrient seawater, but was significantly lower than those of filtered seawater and solutions that contained sodium hydroxide. Therefore, ultrapure water is optimal for both blank and standard preparations because of its stable quality and availability. Given its large concentration range and the use of readily available blanks, this method is suitable for the determination of ammonium concentration and helps our understanding of ammonium dynamics in the ocean.  相似文献   
104.
Sea levels are expected to rise as a result of global temperature increases, one implication of which is the potential exacerbation of sea water intrusion into coastal aquifers. Given that approximately 70% of the world's population resides in coastal regions, it is imperative to understand the interaction between fresh groundwater and sea water intrusion in order to best manage available resources. For this study, controlled investigation has been carried out concerning the temporal variation in sea water intrusion as a result of rising sea levels. A series of fixed inland head two‐dimensional sea water intrusion models were developed with SEAWAT in order to assess the impact of rising sea levels on the transient migration of saline intrusion in coastal aquifers under a range of hydrogeological property conditions. A wide range of responses were observed for typical hydrogeological parameter values. Systems with a high ratio of hydraulic conductivity to recharge and high effective porosity lagged behind the equilibrium sea water toe positions during sea‐level rise, often by many hundreds of meters, and frequently taking several centuries to equilibrate following a cease in sea‐level rise. Systems with a low ratio of hydraulic conductivity to recharge and low effective porosity did not develop such a large degree of disequilibrium and generally stabilized within decades following a cease in sea‐level rise. This study provides qualitative initial estimates for the expected rate of intrusion and predicted degree of disequilibrium generated by sea‐level rise for a range of hydrogeological parameter values.  相似文献   
105.
Recent studies have shown that changes in solar radiation affect the hydrological cycle more strongly than equivalent CO2 changes for the same change in global mean surface temperature. Thus, solar radiation management ??geoengineering?? proposals to completely offset global mean temperature increases by reducing the amount of absorbed sunlight might be expected to slow the global water cycle and reduce runoff over land. However, proposed countering of global warming by increasing the albedo of marine clouds would reduce surface solar radiation only over the oceans. Here, for an idealized scenario, we analyze the response of temperature and the hydrological cycle to increased reflection by clouds over the ocean using an atmospheric general circulation model coupled to a mixed layer ocean model. When cloud droplets are reduced in size over all oceans uniformly to offset the temperature increase from a doubling of atmospheric CO2, the global-mean precipitation and evaporation decreases by about 1.3% but runoff over land increases by 7.5% primarily due to increases over tropical land. In the model, more reflective marine clouds cool the atmospheric column over ocean. The result is a sinking motion over oceans and upward motion over land. We attribute the increased runoff over land to this increased upward motion over land when marine clouds are made more reflective. Our results suggest that, in contrast to other proposals to increase planetary albedo, offsetting mean global warming by reducing marine cloud droplet size does not necessarily lead to a drying, on average, of the continents. However, we note that the changes in precipitation, evaporation and P-E are dominated by small but significant areas, and given the highly idealized nature of this study, a more thorough and broader assessment would be required for proposals of altering marine cloud properties on a large scale.  相似文献   
106.
This paper presents a structural and stratigraphic analysis of the foreland-fold-belt of the Eastern Venezuelan Basin and the main conclusions about shale tectonic mechanisms in the area. The deformation of the foreland-fold-belt has been investigated analyzing the growth strata architecture preserved on the structure fold limbs. Three contractional episodes are proposed for the Eastern Venezuelan Basin: 1) Oligocene to middle Miocene, 2) late Miocene to Pliocene and 3) Pleistocene. The first episode produced contractional listric faults inside the shale and long displacement blind thrusts in the underlying Cretaceous units. The second episode produced the deformation of the Cenozoic strata into overlapping east-west-trending, convex northward anticlines that covers more than 200 kilometers in length and 40 kilometers wide, break-through normal faults product of a high sedimentary load that overcomes contraction and the formation of short-displacement blind thrusts in the underlying Cretaceous units. The last episode is related to an oblique compression and the formation of high angle extensional faults with dextral movement and NW-SE strike. The role of the shale tectonics in the evolution implies that shale deforms in two stages: 1) folding and 2) normal faulting of the crest of the anticline (Break through normal faulting). Folding controlled the sediment distribution during most of the Neogene strata, while the normal faulting of the anticlines represent basin potential for hydrocarbon. The best potential hydrocarbon plays in the basin are related to oblique-collision restricted basins and controlled by break-through normal faults and the presence of NW-SE strike faults that connect the HC source with the reservoirs. Results from this research imply that the role of sedimentation is fundamental for the overburden sand distribution and tectonic constrain of the folds.  相似文献   
107.
108.
Patterns of social interaction influence how knowledge is generated, communicated, and applied. Theories of social capital and organizational learning suggest that interactions within disciplinary or functional groups foster communication of knowledge, whereas interactions across groups foster generation of new knowledge. We used social network analysis to examine patterns of social interaction reported in survey data from scientists and managers who work on fish and fire issues. We found that few fish and fire scientists and managers interact with one another, suggesting low bridging social capital and thus, limited opportunity for generation of new knowledge. We also found that although interaction occurs among scientists—suggesting modest bonding social capital—few managers interact with other managers, indicating limited opportunity for communication of scientific knowledge for the purposes of application. We discuss constraints and opportunities for organizational learning evident in these patterns of social interaction among fish and fire scientists and managers.  相似文献   
109.
Global and regional trends in greenhouse gas emissions from livestock   总被引:2,自引:0,他引:2  
Following IPCC guidelines (IPCC 2006), we estimate greenhouse gas emissions related to livestock in 237 countries and 11 livestock categories during the period 1961–2010. We find that in 2010 emissions of methane and nitrous oxide related to livestock worldwide represented approximately 9 % of total greenhouse gas (GHG) emissions. Global GHG emissions from livestock increased by 51 % during the analyzed period, mostly due to strong growth of emissions in developing (Non-Annex I) countries (+117 %). In contrast, developed country (Annex I) emissions decreased (?23 %). Beef and dairy cattle are the largest source of livestock emissions (74 % of global livestock emissions). Since developed countries tend to have lower CO2-equivalent GHG emissions per unit GDP and per quantity of product generated in the livestock sector, the amount of wealth generated per unit GHG emitted from the livestock sector can be increased by improving both livestock farming practices in developing countries and the overall state of economic development. Our results reveal important details of how livestock production and associated GHG emissions have occurred in time and space. Discrepancies with higher tiers, demonstrate the value of more detailed analyses, and discourage over interpretation of smaller-scale trends in the Tier 1 results, but do not undermine the value of global Tier 1 analysis.  相似文献   
110.
Two gravity sediment cores (GH99‐1239 and GH99‐1246) obtained from the north‐eastern Japan Basin in the East Sea/Japan Sea were analyzed for the orbital‐ and millennial‐scale paleoceanographic changes. Chronostratigraphically, core GH99‐1239 represents a continuous sedimentary record since 32 ka, based on correlation of distinct lithological markers (i.e. dark layer or TL layer) with those in core GH98‐1232 collected nearby. For core GH99‐1246, the age model is constructed through correlation of lightness (L*) values and tephra (Aso‐4 and Toya) layers with those in the well‐dated Oki Ridge core (MD01‐2407), indicating about 134 ka of sedimentation since the latest Marine Isotope Stage (MIS) 6. New geochemical data from both cores corroborate orbital‐scale paleoceanographic variation, such that surface‐water productivity, represented by biogenic opal and total organic carbon (TOC) contents, increased during MIS 1 and MIS 5; CaCO3 contents do not show such distinct glacial–interglacial cycles, but were influenced by dissolution and preservation rather than foraminiferal production. During the glacial periods when sea ice was prevalent, surface‐water productivity was low, and bottom‐water conditions became anoxic, as indicated by high total sulfur (TS) contents and high Mo concentrations. The geochemical data further document millennial‐scale paleoceanographic variability, corresponding to a series of thin TL layers in response to Dansgaard–Oeschger cycles but irrespective of the glacial or interglacial periods. In particular, thin TL layers formed during MIS 3 are characterized by less TOC (about 1%) and TS (about 0.4%) contents and lower Mo (about 5 p.p.m.) concentration, whereas those during MIS 4 and MIS 5 exhibit more TOC (up to 4%) and TS (up to 5%) contents and higher Mo (up to 120 p.p.m.) concentration. Such a discrepancy is attributed to different degree of surface‐water productivity and of bottom‐water oxygenation, which is closely related to the sea level position and extent of ventilation. Flux of the East China Sea Coastal Water controlled by millennial‐scale paleoclimatic events is the most critical factor in deciding the properties of TL layers in the north‐eastern Japan Basin. Our results strongly confirm that TL layers in the Japan Basin also validate the unique feature of basin‐wide paleoceanographic signals in the East Sea/Japan Sea. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号